83 370  EQUILIBRIUM AND NAVE PROPERTIES OF THO-DI I0NAL 1OM
h183 3 PLASMAS(U> CﬁLIFORNIﬂ UNIV LOS RNGELES CENTER FOR b
PLASMA_PHYSICS AND FUS.. S A PRASAD ET AL. JUN €7
UNCLARSSIFIED PPG 1077 NO®OL4-75-C-9476 F/G 20/13




EEEEE
32,

m—ﬂm_uumfm

2l =l

1.6
=
%

|.4

1.25

MICROCOPY RESOLUTION TEST CHART

. NADIONAL BUREAU OFf STANDARDS:1963-4




‘v
RIS ’”
i S
' choot
P e
IS T DA
ELY A
A o
‘. X3
Lo Vo
oy i
LS ‘e
e .
¢ .
N b

[

"Equilibrium and Wave Properties of
Two-Dimensional Ion Plasmas”

S.A. Prasad and G.J. Morales

June 1987 PPG-1077

DISTRIBUTION STATEMENT A

Approved for public releasof
Distribution Unlimited

CENTER FOR

[ PLASMA PHYSICS
§ AND ~
g ¥ | FUSION ENGINEERING
UNIVERSITY OF CALIFORNIA
LOS ANGELES
4
".-v.'. L St e AU T IS DT MR R e AL DD U T o ;;" SR Y T e P 5




Contract N0O0014-75-C-0476

"Equilibrium and Wave Properties of
Two-Dimensional Ion Plasmas"”

S.A. Prasad and G.J. Morales
DTIC
ELECTE

AUG 1 21987
June 1987 PPG-1077

D

Department of Physics
University of California, Los Angeles
Los Angeles, CA 90024

DISTAIBUDON_§7/ 55V s |

Appioved fer public relcas

Distribution Unlimited
St 8 Y A, TR S A N L A A T VA S (L S S AR VWY

VAR
) :"'?}*{','"

PA .(‘3‘\":



EQUILIBRIUM AND WAVE PROPERTIES OF TWO-DIMENSIONAL ION PLASMAS
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Recent experiments have demonstrated the existence of collective modes in

-

a two—-dimensional single component ion layer residing just below the b

surface of liquid helium. A theory of the equilibrium and the wave properties

of such a system is presented. The equilibrium is calculated by balancing the

repulsive self-electric field pressure with the confining external

electric field. 1In the limit of temperature T = 0, the plasma is in the form .

of a constant density disk at the edge of which the density decreases to zero

with a scale length set by the dimensions of the enclosing cylindrical box; -

increasing T increases the width of the tramsition region. Modelling the

ions as a cold two—-dimensional fluid, it is found that the plasma supports an
, infinite set of radial modes for each value of &i the azimuthal mode number.

Imposition of a constant magnetic field perpendicular to the chars? sheet

increases the frequency of the & = O modes and for £.% O, sﬁlits‘;ach g

mode into two; the lowest of these split modes is related to the diocotron

mode. s .
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I. INTRODUCTION

Recent experiments1 have succeeded in confining helium ions under the
surface of liquid helium. The ions form a nearly ideal two-dimensional charge
disk held in position by static electric potentials applied to the walls of
the confining pillbox-shaped cell and by electric fields due to the polariza-
tion of liquid helium (see Section II). Waves can be excited in the static
ion system by applying an oscillating potential to a wall of the cell and
sharp resonances at discrete values of the frequency have been observed.

A theory of the equilibrium and the linear wave properties of the ion
system is presented here. The theory is based on the model of a classical
two~dimensional fluid plasma. The equilibrium is calculated by balancing the
repulsive self-electric field and the plasma pressure by the confining
external electric field. In the limit of zero temperature it is found that
the self-consistent plasma density is almost constant, out to some radius
where the density falls to zero on a scale set primarily by the height
of the confining cell. When the temperature is not zero, a Debye sheath is
added to the transition region, making it wider for increasing values of the
temperature. For typical experimental parameters, the ratio of the effective
Debye length to the height of the cell is £ 3 x 10-4 and hence the zero tempera-
ture density profile is an excellent approximation to the actual profile.

To investigate the small amplitude electrostatic plasma oscillations of
the ion disk, the equilibrium density profile in the zero temperature limit is
used in the linearized fluid equations (governing the two—-dimensional motion
of the ion plasma) and in Poisson's equation (which relates the three-
dimensional potential to the ion charge density). Normal modes of the system

are determined by imposing the condition that the wave potential vanishes on
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the conducting wall of the confining cell. It is found that an infinite set
of radial modes is associated with each azimuthal mode number 2. The experi- d

2 can be identified with the theoretical modes

mentally observed resonances
corresponding to low values of the radial and azimuthal mode numbers.

An interesting consequence of the polarizability of liquid helium shows
up in the plasma wave properties. OUne may at first sight expect that the
plasma particle mass (which enters into the determination of the resonant

frequencies) is ~ 4 a.u. corresponding to an Het+ jon. However, the force of

attraction between an He* jon and the surrounding polarized atoms of the

liquid is estimated to provide enough pressure to solidify around each ion a

casing of ~ 20 atoms which moves together with the ion. Furthermore,

since this large particle moves in a fluid, its effective mass is further

enhanced3 by half the mass of the displaced.fluid. Thus, the effective mass

is expected to be ~ 120 a.u.. The value 116 a. u. gives the best agreement

between theory and experimentz. This large value of the effective mass has the

practical advantage of lowering the values of the resonance frequencies from

those of equivalent electron systems*. The concomitant increase in the

particle size (~ 12 A°) does not however cause a large viscous broadening of b
the plasma resonance peaks since liquid helium below K is almost perfectly
superfluid. The observed width of the resonance peaks is believed to arise
from interactions of the plasma waves with capillary waves on the liquid
surface. At typical experimental temperatures of < 30 mK, even these
interactions are small and one can easily obtain sharp peaks with ’
Q ~ 102 - 103,
Experiments have also been done3 to study the eftect of a constant :

magnetic field Boz perpendicular to the plane of the ions on the wave proper-

ties of the system. The cold fluid theory is extended here to describe the

-
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effect of the magnetic field by including the Lorentz force term in the equa-
tion of motion for a fluid element. It is interesting to note that in the
presence of the magnetic field, the plasma equilibrium can be either static
or dynamic. For example, in the unmagnetized cold plasma equilibrium
described earlier, each fluid element is at rest since the total electric
field acting on it 18 zero. Hence, imposing a magnetic field Bo£ does not
change the equilibrium density profile. On the other hand, one can also have
dynamical equilibria with a magnetic field. For instance, if in the static
magnetized equilibrium, the guard ring potential is changed, then each fluid
element would experience a radial electric field. The plasma which would have
adjusted 1ts radius In the absence of Bo£ to cancel this electric field now
executes an E x B rotation around the axis of the cell. Since the radial
electric field is not proportional to the distance from the axis, the E x B
rotation velocity has a shear. Viscosity effects, if included, can also cause
a radial redistribution of the plasma leading to a more complicated equili-
brium problem. The present study is limited to the simple case of static
equilibria.

The presence of the magnetic field breaks the azimuthal symmetry of the
unmagnetized modes, i.e., modes with azimuthal mod-~ numbers +2& ard -%
(% # 0) which are degenerate in the absence of the magnetic field now have
different trequencies. These are the two-dimensional analogs of modes found

6 As in the three-dimensional

in magnetized single-component plasma columns.
case, the lowest branch (for each value of L&) is an edge mode, whose existence
depends on the presence of a free plasma edge. 1In the limit ot a large

magnetic field, the density perturbation associated with this mode is

localized at the plasma edge. The fluid motion is just the E x B motion and
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8o the mode can be regarded as a two-dimensional analog of the diocotron mode.
The paper 1s organized as follows. In Sec. 1I, the geometry of a
typical experiment is described and it is shown that the two-dimensional
approximation of the ion system is justifieds In Sec. III, the horizontal
equilibrium of the charge disk is obtained by balancing the self-repulsion and
pressure by the confining electric fields produced by the voltages on the cell
walls. The theory points to an almost rectangular density profile with a
Debye sheath near the edge. The cold fluid equations are used in Sec. IV to
obtain the unmagnetized normal modes supported by a plasma disk with a
rectangular radial density profile. These equations are extended to treat the

magnetized modes in Sec. V.
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II. Experimental Geometry

A typical cell used in the two-dimensional ion plasma experiments is
shown schematically in Fig. 1., It consists of two horizontal electrodes A and
B a distance h apart, electrically insulated from a guard ring G of radius R.
The cell is partially immersed in liquid “He (a screen grid at the center of B
allowing the liquid into the cell) so that the height d of liquid helium is
roughly half the cell height. Helium ions are created by a field emission tip
(positioned just below the screen grid in B) which is biased a large positive
voltage relative to B. Once the ions enter the cell through the screen grid,
they are pushed up towards the surface by the electric field due to the
potential difference Vpp between A and B. However, the ions also polarize the
surrounding liquid helium (dielectric constant € = 1,06) and this polarization y
pushes the ions downwards with a force which can be simulated by image charges
(e - 1)q/(e + 1) = 0.03q located as far above the liquid surface as the ions

lie below. The two forces create a potential well for the vertical motion of

the ions. The bottom of the potential well is typically ~ 4 x 106 cm below
the liquid surface (and about 20% further down at the plasma edge where the
imposed vertical electric field is weaker). At typical temperatures

~ 3 x 10-2 K, the r.m.s. deviation of ions about the bottom of the well is
less than 2 x 10~7 cm. A positive potential V(; applied to the guard ring G
provides the radial confinement of the plasma sheet which, typically, has a
radius ~ 1.4 cm and contains ~ 6 x 108 ions (corresponding to an interparticle
10-4 cm). Thus the disk formed by the ions is two-dimensional

spacing of 1 x

to an excellent approximation,
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III. Equilibrium

The azimuthally symmetric horizontal equilibrium of the two-dimensional
plasma layer is assumed to result from the balance of the electrostatic forces

on the plasma and pressure. Ignoring correlation effects, the equilibrium

charge density 0,(r) thus depends on the electrostatic potential ¢, in the

plane of the charges through the Boltzmann factor exp(-qd,/T) where q is the
charge of a single ion and T is the temperature of the plasma (which is taken
to be the temperature of the surrounding liquid helium). The equilibrium in

the vertical direction z is not explicitly considered since, as indicated in

the previous section, the plasma layer is a flat disk of virtually zero
thickness located close to the liquid surface for typical experimental
parameters. Thus, Poisson's equation can be written, to a good

approximation, in the form

13 3 324,
T3 Yot 32

= ~4mq0o(r) &(z - d)
= -41q9,(0) exp {- qldo(r,z=d) - ¢o(r=0,z=d)]/T}&(z - d) , (1)

where ¢, satisfies the boundary conditions ¢ (r = R, z) = 0,
$o (r, 2z = 0) = Vag - Vg and ¢ (r, z = h) = =V (where the zero of the
potential has been redefined for convenience). It is easy to verify that

% (r, z) =) [Fq fon (2) + gn (2)] JO (konr) (2)
n=]l

sint k., d sinh k(h-z), for z>d

1 On OUn

Eon'®) " Sinh k4 sinh Kk (hed) (3
On stn On sin on sinh k. z sioh kUn(h-d)’ tor z<d
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VG/sinh kon(h - d), for z>d
2 sinh kg,(z = d)

g (z) = - ’ (4)
n k. R J (k. R) -
On 1" 0On (VAB VG)/sinh kond, for z<d

{with kg, being the solutions of Jg(kgpR) = O] is the general solution of
Eq. (1) for z # d, which satisfies the boundary conditions and is continuous

across the layer z = d.

Integration of Eq. (1) across z = d gives the jump condition

3 - 3¢ = =4
7o lar g fam T TR <)

which together with Eqs. (2) - (4) yields the following nonlinear equation for
the coefficients Fp:

2 2 kgpsinh kg h
=0 (konr) [¥_ | . ]
2 i n tsinh k nd sinh kon(h - d)

0

2 Vs VAB -V R
+ [ - — - — ]} = 47q f rdr J (k. r) o (r)
R Jl(konR) sinh kon(h d) sinh kond 0 0" On o
B q
= 4mq g rdr JO(konr) 00(0) exp {- T [E FmJo(kOmr) - E Fm]} . (6)

Equation (6) can be numerically solved for F, and hence for g,(r) by
successive iteration.

The numerical solutions indicate that as the temperature is decreased,

the density profile 05(r) is almost constant up to a radius (which is

determined by the geometry, the potentials applied, and the total charge)

where it deci.ases to zero rapidly. For d = % h << R, the scale lenyth

for the density fall-off region in the small T limit is determined entirely

by h, the height of the cell. Analytic solutions obtained in the Appendix




for a simple Cartesian geometry (in the T + 0 limit) supports these

| conclusions. The analytic solutions also suggest that the T = O density
profile near the plasma edge r = a has the form 0p(r = a) ~ (a - r)!l’/2, ¢
For non-zero temperatures, a Debye sheath [with Debye length defined as

. Ap = (Th/&ﬂqzoo(O)]llzl is added on to the plasma edge. Figure 2 displays the
numerically determined equilibrium profiles 05(r) for Ap/h = 0.1, 0.2 and for
typical experimental values VG/Oo(O)qh = 11.6, VaB/0o(0)gh = 9.9, d/h = 0.467
and R/h = 5; these profiles are obtained by solving Eq.(6) on a radial grid
of 101 points with a basis set of 82 Bessel functions. The inner profile, for
which Ap/h = 0.1, is a good approximation to the T = O density profile.
Typical experimental values of Ap/h are less than 3 x 10~% and therefore the
plasma is described well by the T = 0 density profile.

In the T = 0 limit, there is a one-to-one correspondence between the
values of the central density 9,(0) and the plasma radius a, for a given
geometry and a given set of confinement potentials. This relation can be
obtained to a good approximation by noting that the T = U profile is nearly
rectangular and that there is no potential variation in the charyge layer for
r < a (i.e., no horizontal electric field for r < a). For a rectangular
profile of radius a, one can readily find the value of d,(U) needed to produce

a potential drop (due to self-electric field) between r = U and r = 4 which

cancels the potential drop due to the external confinement tields. The
result is a nearly exponential dependence of d,(0) on a/g as displayed in
Fig. 3 for the values Vag = 0.86 Vg, d/R = 0.093 and h/R = 0.2. The slope

. of the &n 0o(0) vs a/R plot is approximately 7R/h, The maximum experimental
value of 2n[0y(U)qh/V;] that can be obtained experimentally2 is -2.45
corresponding to the maximum possible value ot the plasma radius a = U.895R =

1.34 cm. The presence of a surface tension meniscus at the edpe of the liquid

- - - . . . N ey m AR R N et DRI T N S S I I S I I » T ] R RV RN SRy
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helium pool is believed responsible for limiting the plasma disk radius to
to this value,

As mentioned in the Introduction, the static equilibrium density profile
05(r) obtained in this section is independent of whether a magnetic field is
present or not. Thus, it can be used to study both unmagnetized (Sec. IV) and
magnetized (Sec. V) plasma oscillations of the ion disk, Since the width of
the density fall-off region is small compared to the plasma radius, the
equilibrium density profile can be approximated well by a rectangular profile.

This simplifying assumption is used in the following sections.
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v. WAVES IN THE ABSENCE OF A MAGNETIC FIELD

A. Theory

Since the equilibrium is stationary in time and is azimuthally symmetric,
the perturbed density, velocity, and potential can be assumed to be propor-
tional to exp(-iwt + if8) and thus the linearized continuity equation,

equation of motion and Poisson's equation take the form

13 it )
two) + T lro vyl +0 T=vig=0, 7)
a a3 g
fay, = -~ (r 3=+ 0 =) (6 + 6] (8)

(= + 22 -2 ¢l = -AchlS(z - d) , (9)

where oo, g, and YL T VT + Vleé are functions of r, and ¢l(r,z) is the

1
mode potential and ¢o(r,z) exp(-iwt+if9) is the potential due to the driver
voltage applied to the walls. It should be noted that Eqs. (7) and (8) are
two—dimensional equations defined only in the plane (z = d) of the charge
layer, while Eq. (9) is a three-dimensional equation. To complete the problem,
boundary conditions on 9| have to be specified. These are obtained by noting
that the walls of the cell are conductors and that the impedance between
different sections of the wall at typical mode frequencies is small; thus ¢,

can be assumed to vanish at the boundaries z = 0, z = h, r = R of the cell.

For z # d, Eq. (9) reduces to Laplace's equation for ¢, and the
general solution satisfying the boundary conditions and being continuous at

z =d is

o

e ade Wb D0 0 .’y 0N W Wy 0 .

"_'. “a \,J,‘-‘. "'u' .‘-l‘\ "'J“'J‘.'-‘\I‘\t‘:'f.'f\J'.'-F"-l'\'-f-'d'.'-f\J'"f:'f\d‘.'l.'f.'{\"d‘\-‘-0':'(
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n
¢1(r,z) -nzl An fzn(Z) Jz(kznr) ’ (10)
where k are the roots of J (k R) = 0 and
n £ n
h k -
fl (z) = inh k, d i hk, (h - d){sinh :znd sin: kzni: - :;’ z Z : (1
n sin gnd sin 0 sin w? sin n , 2

is defined such that £ (z=d) = 1. The functions O1(r) and ¢e(r, z = d) are

n
also expanded in terms of J (k r):
2 n
(-
o(r) =] BJ (k r) , (12)
1 na=l n 2 &n
an
¢ (ry z =d) = ] ¢ 4 (k r) . (13)
n=1 n n

Integrating Eq. (9) across z = d gives the jump condition

— - — = ~4mqo,(r) . (14)
3z g+ 3z d- i

Combining Eqs. (7) — (1l4) yields the relation

= = -1
A g . @Y. (@) 0o c, (15)

between the Fourier-Bessel components A, of ¢ (r,z=d) and the components

Ch of the known driver potential ¢e(r,z=d), with the matrices D] and D?

defined by
2 k, R sinh k, h
w R n 2n 2

D = (D - = k R) 6 lo

( l)mn ( 2)mn 2wp2 h sinh k,.d sinh ko (h - d) ( 2n ) mn (o)
and

' ' X3
(D) = j rdr d (r) (kg kg Jglky ©)d (ky )+ T2 J(kg r)d (k)]

0
(17)

.
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In these definitions, 8g; is the Kronecker delta function, primes repre-

sent derivatives with respect to the arguments, and wpz, ao are defined as

4mq20_(0)
2 . __ o - s
mp m (18)
R o (r)
Oo(l') = O.—OTU)- . (19)

Equations (15) and (16) imply that the plasma response has resonances at

frequencies for which Det (D}) = 0. The resonance frequencies, when normalized

in terms of Wy, are completely specified by the values of h/R, d/R and 30 (r/R).

The numerical solutions for the lowest few resonance frequencies when 8o<r) is
assumed to be a step function of radius a are displayed in Fig. 4 for typical
experimental values, h/R = 0.2, d/R = 0,093, a/R = 0.895. Each plasma
resonance 1s characterized by an azimuthal mode number & and a radial mode
number N. The (numerically smoothed) functions ¢1(r,z=d), ol(r), vlgr) and
vle (r) are displayed in Fig. 5 for a frequency close to the £ = 1, N =2
resonance chosen as a typical example. Since from Egs. (7) and (8), o]
contains a term proportional to 305/3r3¢)/3r = -0,(0)8(xr - a)3¢]/3r and since
the radial electric field does not vanish at r = a, 0] has a sharp spike at the
plasma edge. It is, however, noticed in the numerical solutions (as in Fig. 5)
that ¢1(r<a,z=d) has the form of a single Bessel function with a rather small
derivative at r = a (as long as a/R is not very close to unity). In fact, the

assumption ¢ = &NJZ(KiNr)ElN(Z) [where KEN is a solution of Jé(Ka) =0 aid

-~ L]
f is defined by Eq. (ll) with K

N N taking the place of klN] can be used

in Eqs. (7) = (9) to obtain good approximations to the resonance frequencies

w of a step—function equilibrium density profile:

N
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L} 1 ] L
02 = 0.2 h KzNa sinh Kgyd sinh Kpp (h - d)

. ; ’ (20)
N P a sinh K N h

Equation (20) predicts that when plotted versus KkNa, the resonance

frequencies for all % fall on the same curve. The solid line in Fig. 6
represents this curve for d/a = 0.104, h/a = 0.223, The exact numerical
solutions (d/a = 0,106, h/a = 0,223, a/R = 0.895) using the expansion (10)

h for ¢; lie very close to this curve. The assumption d¢/dr = 0 at the con-

! ducting wall (r = R) has been used previously 1,7 to obtain an equation

' similar to Eq. (20) which agrees well with the experimental values of
resonance frequencies. Figure 6 shows why this assumption works well (even
though it is unjustified) when a is nearly equal to R. The limits of

| applicability of Eq.(20) are discussed later.

The simple approximate structure of ¢]| suggested by the numerical
results can be understood by considering Egqs. (7) =-(9), which can be

combined, ignoring ¢o, as

B 2 .
w272(p &%) = v o (B2 5 (6) 70,100 - ) (21)

Multiplying both sides by ¢lexp(-i£9) and integrating over the cell volume

yields the variational (Rayleigh—-Ritz) principle value of w?

a

- : 2
B f rdr 0,(r) lVl[¢l(r,z=d)elle]|

] o]
w2 = wh — . (22)
! i28 |2
| [ | rdrdz  |V(¢,(r,2)e "]
O 0

)
L
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The minimum value of the right-hand side gives the lowest eigenvalue w? and
the ) that makes it the minimum is the corresponding eigenfunction. The
second lowest eigenvalue is the minimum produced by a wave function which is
orthogonal to the first and so on. It is of interest to note that Eq. (22)
lalong with Eq. (8)] implies that the total energy in the wave electric field
is equal to the total kinetic energy of the plasma particles.
To proceed further, the denominator in Eq. (22) is converted, on
integration by parts, into the area integral 4mq Z rdr o) ¢) (r,z = d).

From Eqs. (14), (l1), (10), and (12), it follows that if kz h << 1, then
n

1 h

B * T dm - 4

thus if h/R is small and if higher order Fourier-Bessel components can be

ignored, then

1 h ) ,
dl(r) * Zrq dh =D ¢1(r, z=d). (23)

Thus Eq. (22) takes the form

if9

O

2
Vl[¢1(r,z=d)e ]| rdr
w? = mp2 d(h - d) 2 5 * (24)
[ |oycerzmare®®’|
0

rde

The minima of the ratio of the integrals can be verified to be (K'lN)z [which
occur for ¢ = Jl(KiNr)] in agreement with Eq. (20) in the limit of small
h/R.
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The discussion above suggests that Eq. (20) might fail when the value of
h/R is not small compared to unity. Figure 7 displays how the deviation

between the prediction of Eq. (20) [solid line] for the £ = 0, N = 2 mode

e e o W

chosen as an example and the exact numerical solutions of Eqs. (15) = (17)
" [circles] increases with increasing values of h/R. Figure 8 presents the
comparison between the predictions of Eq. (20) [solid line] for the same mode

: and the exact numerical solutions [circles] as a function of a/R for h/R = 0.2.

o

The percentage difference is relatively constant until a/R = 0,98, beyond

-

which it rapidly increases. The limiting value of the exact solution as the

R TR )

plasma edge approaches the walls can be obtained from Eqs. (15) - (17), For

; a/R + 1, the matrix D2 becomes diagonal,

\ (Dz)mn = .J%_ 2+1 %) S (25)
. and thus the resonance frequencies (which are the zeros of D|) have the values
)
t : -
P h kZN R sinh klN d sinh klN(h d) 26
W™ %P R sinh kgy h , (20)

corresponding to wave functions ¢l= BNJz(k N r)fzéz) which vanish at

L
r = R, It is found numerically that the transition from the modes of Eq.

(20) (whose radial derivative at the plasma edge is small) to the modes of Eq.
(26) (whose value at the plasma edge vanishes) occurs for values of a/R very
close to unity (a/R Z 098 for typical values of h/R). The frequencies of Eg.
(26) are roughly (klN/KLN)Z higher than the values of Eq. (20). Since in

\ experiments, the plasma radius a cannot approach the cell radius R to

within ~1.5 mm due to the liquid helium meniscus, modes described by kq. (26)

cannot be observed in cells with R < 8 cms.

) ¥ ‘AT W A R T L A e R A T e T W PN 2T B S S W A S S W, I -"q"'-""‘_«J
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B. Comparison with Experiments

Waves are excited in the experiments of Ref. 1l by imposing an oscillating
potential ¢, on the guard ring and are detected by measuring the current from
a circular button (of ra&ius r.) at the center of the top electrode, If
the apparatus is exactly cylindrically symmetric, only £ = U modes should be
detected. The vzlues predicted by Eq. (20) for the first four radial modes
having no angular dependence agree with the experimental values to within a
few percent. Other resonances have also been observedz, which can be
identified with the predictions of Eq. (20) for various low values of £ (# V)
and N; these probably arise from an undetermined azimuthal asymmetry in the
system,

For the £ = 0 modes, the absolute value of the current flowing out of the
center button when the driver frequency matches a resonant frequency [given
approximately by Eq. (20)], can be obtained by including the collisional
damping term vy])] on the left-hand side of Eq. (8). This has the effect of
replacing w2 in Eq. (16) by w(w + iv)., If v is small compared to the
frequencies w of interest, this 1s equivalent to replacing w by w + iv/2 in
Eq. (i6). For w near woN {which are simple zeros of Di(w) as follows from the

self-adjointness of Eq. (21)], one can write

\

Dl‘l (w + iv/2) @ = wgy + 1972

D=l (uyn + v)

where D}=l on the right hand side can be conveniently evaluated at a redl
value wgNy + VY of the frequency. From Eq. (15) a similar relation holds

for the coefficients A, evaluated at w + iv/2. Therefore, from Eq. (l0)

the wave potential has the form

.- n_n_




e W e

3h5t.lJ~J.

VAp(woN + V)

w - woy + iv/2 fON (z) JO (kONr)

¢l(ri z) = z
n=1

when ® is close to Wgyy and v is small compared to w. The real coefficients

An(wgy + V) are obtained by numerically solving Eq. (15) for w = woy + v

and

Cn = =24y [sinh k_d + sinh k_ (h=d)] [k RJ] (k. R) sinh k_h]=' .
n On On On Un

0

The charge density induced on the center button by the plasma wave potential

is qO0jnd = (4n)‘13¢1/az|z.h and the magnitude of the current through the

center button is given by

Te
I(w > wyN) = w[2% [ r dr |9ind]]
0

i (28)
v An (WON + v) Ji (RoNTe)
It 1/2
7 (w rc) g-l [(w - wON)Z + V2/4] sinh kUN (h-d) hd

For w not too close to wpN, one can ignore iv/2 and replace the terms in the
braces by Aj(w). The plot of I(w) vs, w consists of a series of Lorentzian
resonance peaks centered at wgy and of width v. This is displayed in Fige. 9

for a typical value of the collision frequency v = 4 x 10=3 w, and for a range

of w covering the first four ¢ = U resonances.
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V. WAVES IN THE PRESENCE OF A MAGNETIC FIELD B = BOE

Imposing a uniform magnetic field B = Bo£ perpendicular to the plane of
. the plasma disk introduces the Lorentz force term @ y,, X z (where Q = qBy/mc
i is the cyclotron frequency) to the right-hand side of the linearized equation

of motion (8). Thus the perturbed velocity components are givea by

. 124 ,
g Vir = —-_—573 (-iw —r + —) [¢ ¢e]z=d , (29a)
! el g e _ 2

Y10 " TT - aZ m ( ) ar) [¢1 + ¢e]z-d . (29b)

Using the expansions (10) - (13) for 4], o], and ¢, one again obtains Eq.

0

o, (15), but with the matrices D} and D7 now given by
X
‘ w2 - Q2 R kz R sinh kznh 2
" D)oy = By = 7 o kg RS (30)
o mn mn Z“p h sinh klnd sinh kzn(h - d) ,
W)
\ R
= ' L
v (D)) o = [ rdr G _(r) [k, k, Jo(k, r) Jy(k, r) +-2-J (k, £) J,(k, 1)}
]
1]

N e R dg_(r)
* - *
¥ - (J) rdr = J,(k, 1) J (k, ) (31)
,
’ ~
' If £ =0 or if do is constant for 0 < r < R, then the last term of Eq. (31)
.
Zd vanishes; then Eqs. (30) and (31) can be obtained from Eqs. (16) and (17) by
3
,‘l
;g replacing w? by w2 - 2, Thus, the square of the resonance frequencies
t
: in the magnetized case are shitted up by an amount Q2 from the unmagnetized
h va.ues with the eigenfunctions remaining unchanged. These are the
1)
J
h two~dimensional analogs of the usual upper hybrid resonance.
K
L2
K/
)
)
1
!
b
&)
v
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Without the last term in Eq. (31), modes corresponding to + £ and -% are

degenerate. For £ #* 0 and dao/dr # 0 (for some r<R), the last term in Eq.
(31) breaks the degeneracy and causes each unmagnetized mode to split into

two upper hybrid modes which propagate in opposite directions with azimuthal
phase velocities w/f2. In addition, two modes appear near w = , corresponding
to +¢ and -%. The effect of the magnetic field for |&] = 1 is shown in Fig.

10 for a/R = 0.895, d/R = 0.093 and h/R = 0.2, where a is the width of the

rectangular density profile So(r). The modes occur in pairs designated

+ or - depending on whether they they propagate circularly right handed or left
handed with respect to the magnetic field. The two new modes near w = Q are
also shown. It should be noted that while these modes occur very close to the
cyclotron frequency §, there is no resonance when w = Q exactly. It is of
interest to note that when w = Q exactly, Egqs. (30) and (l5) yield D1 = l)2
and Ap = -Ch. Thus the density perturbation produced in the plasma is such
that the total wave potential 9] + ¢o is zero in the plane of the charges.
This is true for all values of £ including £ = O.

The forms of ¢|(r, z = d) and 0)j(r) for the magnetized modes are
qualitatively similar to the corresponding magnetized modes. The wave
potential $),(r,z = d) for the positive % mode near w = Q increases linearly
with r till the plasma edge and then decreases to zero at r = KR; the perturbed
density 0] increases monotonically to a peak at r = a, as displayed in Fig. 1l
for the case £ = + 1. The curves are obtained by numerically solving Eq. (1l5)
for h/R = 0.2, d/R = 0.093, a/R = 0.895, U wp = 0,5 and w/wp = 0U.504. A basis

set of 82 Bessel functions is used on a l0l-point radial grid; the

oscillations in ¢} for r > a and the finite height of 0] at r = a are con-

sequences of these numerical limitations. For the negative £ mode near w = Q,

. s _ o .8 w_&



UBLIELI PO YL LI LU N R e B0 AT #%e 4% % B BYVa At htataY i al b2, it %2000 L e M g e e e e et e * A ath u"s 0\ 2% ¥

4
-21=- X
. ']
o
the wave potential ¢|(r, z = d) is mainly confined to the annulus a < r < R .
K
and the perturbed density J; is localized at the plasma edge r = a. 4
The behavior of the magnetized modes is similar to the unmagnetized modes '
]
as a/R approaches unity. In this limit, the last term in Eq. (3l) vanishes,
the matrix Dy becomes diagonal, and the resonance frequencies take the values {
W2 =02 s w2 h klNR sinh ksz sinh kZN(h_d) ] (32) x
N P R sinh k h -
4N Y
2
As in the unmagnetized case, the frequencies of Eq. (32) correspond to s
’
eigenmodes ¢1(r, z =d) ~ J2 (ker). It is worth noting that without a free j
>~
plasma edge, the +£ and -% modes are degenerate even in the presence of a :'
magnetic field. 2
As a/R increases towards l, the frequencies of the * ¢ modes (for any
given value of ) shift to the values wlN given by Eq. (32) accompanied by
a corresponding change in the form of ¢)(r,z = d); the exceptions are the -% 3
‘Al
mode near ®w =  which approaches w = Q, and the lowest + £ mode which 3
approaches w = O, As in the unmagnetized case, the change is rather ?,
abrupt near a/R = 0.99. As shown in Fig. 10 (for |%| = 1), the bottom two +2 K,
modes cross each other and it becomes clear upon letting a/R approach unity
that there is a mode transition at the crossing. This is illustrated in Fig. i
12 for the case £ =l. The two upper lines go over to wW}| given by Eq. (32) ”
X
-
in the limit a/R + 1 and must be regarded as the same mode. Similarly the S
~
lower two lines approach w = 0 in the limit a/R = 1 and hence belong to the o~
A
=N
same branch., For the lowest branch, for all % #* 0, the ratio w/Q approaches ‘q
- Y,
zero for large values of @ and in this limit, Eq. (29) yields :
- o4
Xpp = - (c/B) V1 (4 + $e)p=q * 2z indicatiag incompressible motion ~
)
o
)
3
~
2
E' 1

R AR
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V.v
( 1 ~11

tion, 91 = ({w)~l v dog/dr = =(1w)~1 vip 0,(0) &(r-a); thus the perturbed

= 0) along the plane of the charges. Also from the continuity equa-

N R

charge density is localized at the plasma edge r = a, The mode in the limit

of large 1 is purely an edge mode and can be interpreted as a two-dimensional

P CNENED

analog of the usual diocotron mode. It should however be noted that the
two-dimensional equilibrium considered here does not execute an E x B

~ ~
rotation and hence phenomena such as negative energy waves and resonance

layers are absent in the present system.
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VI. CONCLUSIONS

A theory of the equilibrium and wave properties of a two-dimensional ion
plasma confined just below the surface of liquid helium has been developed.
In equilibrium, it is found that for the typical confinement geometry used in
experiments, the plasma density profile is almost rectangular in the cold
limit; for T # 0, a Debye sheath is introduced at the edge. A theory of
linear waves that considers the plasma as a cold two-~dimensional fluid has
been constructed. Imposing the condition that the linearized wave potential
vanish at the conducting walls of the confining cell leads to an infinite set
of radial modes for each value of the azimuthal mode number f£. Through a
variational approach, it is shown that an excellent analytical approximation
for these frequencies can be obtained (for h/R <<l and a/R not very close to
unity) and that the wave potential in the plane of the charges for any
resonant frequency has the form of a Bessel function with a rather small
derivative at the plasma edge. Imposition of a uniform, constant magnetic
field perpendicular to the plane of the charges doe¢- not change the
equilibrium of the system in the T = O limit, However, the frequencies of the
£ = 0 normal modes are shifted upwards and for || # 0, each normal mode is
split into two modes (corresponding to +% and -%) which propagate azimuthally
in opposite directions. Two new modes (+% and -%) appear for frequencies verv
close to the cyclotron frequencv. The two lowest +% modes cruss each other
and it is shown that there is a mode transition at that point. The lower
branch is an edge mode and is identified as the two-dimensiovnal analoyg ot the
diocotron mode. The other branches are the analogs of the familiar upper

hybrid mode.
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APPENDIX

EQUILIBRIUM PROFILE IN CARTESIAN GEOMETRY

T

A simplified model geometry in which the equilibrium density profile of

L

the two-dimensional plasma can be analytically obtained in the zero
temperature limic is described here. The model, shown in Fig. 13, is a

Cartesian model, one in which the plasma is a ribbon infinitely long in the

-

om
o

direction perpendicular to the plane of the figure. The notation is slightly

different from that of Fig. l. The vertical coordinate is now denoted by y

a3

(with z used to donote the complex variable x + iy). Also, for convenience
the plasma layer is assumed to be midway between the top and the bottom of the
confining box. As in Sec. II, the vertical equilibrium is not explicitly
considered and consequently the vertical holding field is ignored. Thus, the
model consists of a ribbon of charge constrained (by forces not included in

; the analysis) to the midplane of the containing cell., The self-repulsion

of the plasma particles balances the confining force due to the potential V,

E applied to the side walls and thus determines the horizontal equilibrium

7 density profile 0o(x)., Since the temperature is assumed to be zero, the

’ plasma pressure plays no role in the equilibrium.

: Because the horizontal electric field on each plasma particle is zero,
$(x,y = 0) = V] = constant for |x| < a. From symmetry, the lines AB and UL in

.: Fig. 13 are lines of force. Une thus has the problem of tinding the charge

; distribution on UA when it is at potential V|, the side BC is at 1, the

K,

h side CD at V, with AB and OD being lines of force., Conformal mapping is used

) to solve for the potential distribution and hence the charge density on VA,

.

K The potential V} is not known a priori, but it is tound that for only one

1

g particular value of V| is the calculated charge density finite everywhere in

OA and has the correct sign; this special value ot potential must be that

corresponding to the equilibrium in the cold limit.
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The interior of the rectangle OBCD can be mapped into the upper half of

the complez Z-plane by the elliptic function transformation
¢= & +in = sn2(K@(1 +35),a] , (al)

where z = x + iy. Defining the parameter m by the equation

K
-7, (a2)

it is seen that the points D, O, A, B, C in the z-plane are mapped into

.0p =0, E0 = m, £A, EB = 1, §C = = of the Z-plane, with the interior of the
rectangle DOBC mapped into the upper half of the g-plane (Fig. lé4a). To keep
the solution reasonably simple, it is also assumed that the plasma half-width

a is such that £y = 1 - m; from Eq. (Al), this implies
Er = 2 ' a
A = m nd“[K'(m) T l -m] =1~ m (A3)

The problem thus reduces to finding a function P = ¢ + i¢ analytic in the
upper half of the g-plane with ¢ satisfying the conditions indicated in Fig.
l4a, along the real axis. The solution to the problem is the superposition
of the complex potentials satisfying the boundary conditions of Figs. l4b and

l4c. The respective solutions are

1
-V -V
- 2 o l - 20 - 1 - 2 ,
Py = V) Y gr s o T (- 2], (44)
iv - P 2 p 2
__o 2 . 12 =12 - {1+~ 2m?} )
P, 7 [1 + % sin e R I (A5)
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The surface charge density of the plasma sheet is given by

. -4 =L gedR
2nq dy y=0,|x|$§ 2mq €az y=0,|xl§§

) -
" a

1

: -V -V v
; --Ka) : 2o 1l 2L e
- Tl (1 -m - §)1/2 T2k([1 - 2m]?) 7 2
X
l'
k The surface charge density has a singularity at £ = 1 - m [or from Eq. (A3),
o x = a] unless
x 1
=V -V \' \'

A 2 o 1 o o
R 5T Yoo =T (1 - m)

\ 2k'([1 = 2m] %) 2n W

or
e
N 1 2m - 1
Vio= Vo o+ K (ML - 2m]2)] , (A7)

o
?*.

" in which case the charge density is
"

K’(m)Vo

. g (x) = —5—>Re(l - m - §)1/2

% ° ﬂ'qu
(.
) K'(m)Vo «
K = — Re{l - m - m ndz[K'(m) =, 1 - m]]’”2 . (A8)
) meqL L
:; The dependence of U, on x is displayed in Fig. 15 for the value

o

ﬁ d/L = 0,625 (or m = .1). To demonstrate that the warm plasma density profile
, approaches this shape in the limit T + 0, the numerical solutions of the
¢
b Cartesian analog of Eqs. (1) - (6) are also shown in Fig. 15 for the same

P

)

\ geometry, the same 0,(0) and Ap/d = 0.05 and U.l [where

Ay =((2dT/4mq2a0(0)} /2],
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For small values of m [or from Eq. (A2), small values of d/L], Eq. (A8)

can be expanded near x = a to find the behavior of the density profile near

the edge. This yields

oo(x = a)

L 1/2 3 = X Ta - Xv211/2
70 Re [Tm =+ 72D . (A9)

2

Thus, very near the plasma edge x = a, 0, (x) ~ (a - x)!/2, The width of the

plasma edge is approximately 2d/w.

) The (a - x)”2 dependence for O,(x = a) can also be obtained from a

simpler argument. The solution of the two-dimensional Laplace's equation

32¢ , 3%
;2-+m-=0 (AlV)

in the vicinity of x = a (see Fig. 16) has the general form

) ]
+s

n

$(p,8) =Re ) P, (pelB)  +vV] | (All)
n=0

where p = [(x - a)2 + y2]1/2 and 8 = tan—! [y/(x - a)). Applying the

conditions ¢(p,m) = V|, (1/p) 3¢/39|e_0 = (0 and the fact that the electric

field is finite everywhere leads to the expression

: #0,8) = v + 1 q o"TI/?

X cos [(n +%)91 ) (A12)
n=]
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The charge density for x < a is

t ZaY

g (x

=123¢ =3 -x)lr2 .2 - x)372
o a) 5 5 Ql(a x) 5 Q2 (a - x) + o e (Al13)

FERCES §

in agreement with Eq. (A9).

In the cylindrical case, Laplace's equation for the equilibrium potential

is (with z = vertical coordinate in the notation of Sec. ILI)

2 2
3¢ 13 3% _ (Al4)
ar? r 3r 322

which can be locally (for r = a) transformed into the form (Al0) by setting
r = a exp(€u), z = €av in the limit ¢ + 0. Following the same procedure,
one can show that even in the cylindrical case, the equilibrium density

profile do(r = a) = (a -~ r)}’/2,

A PP
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FIGURE CAPTIONS

1. Typical experimental geometry.

2. Equilibrium density profiles o5(r) for Ap/h = O.1, 0.2 and for typical
experimental values V;/0,(0)qh = 1l.6, Vog/d,(0)qh = 9.9,
d/h = 0.467 and R/h = 5.

" 3. Central density d,(0) required to produce a plasma disk of radius a

A for T = 0; VAR = 0.86V¢, d/R = 0.093 and h/R = U.2,

4, Unmagnetized normal mode frequencies for d/R 0.093, h/R = 0.2 and a/k =

ﬁ 0.895. The modes are characterized by azimuthal mode number 2% and

: radial mode number N.

? 5. Radial dependence of wave potential ¢l (r, z=d), density ol(r),

4 radial velocity vlr(r) and azimuthal velocity vle(r) tor the £ = 1,

N = 2 mode; the geometry parameters are d/R = 0.093, h/R = 0,2 and

a/R = 0.895. If ¢ 1is real, o and v are also real and v
11 L 16 ir

is purely imaginary [see Eqs. (7)-(9)].
6. Comparison ot the exact values of the resonance frequencies

and the approximate values given by the analytical expression (20)

[solid line] for d/a = 0.104, h/a = 0.223 and a/R = U.895.

:
: 7e Comparison, as a function of h/R, of exact values of resonance frequencies
' (circles) and the approximate values given by the analytic expression

; (20) [solid line] for the £ = 0, N = 2 mode and tor a/R = 0.895,

N d/h = 0.465.

D 8. Comparison, as a function of a/R, of exact values of resonance frequencies
; (circles) and the values given by Eq. (20) [solid line] for the & = 0,

f N = 2 mode and for d/R = 0,093, h/R = 0.2,
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9.

10.

11,

12.

13.

14,

15.

16.
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Current I (in amperes) through the center button in the top electrode
as a function of the external frequency w [Eq. 28). The collision
frequency Vv is 4 x 10-3 w, and the driver voltage ¢y = 10mV.

Plasma resonances vs. 2 = gb/mc for & = %l and for d/r = 0.093, h/K =
0.2, a/R = 0.895. The branches designated + (or - ) propagate
circularly right-handed (or left-handed) with respect to the magnetic
field.

Radial dependence of the potential ¢|(r,z=d) and density o1(r)

for the 2 = +] mode near w = Q for Q/wp = (0.5, d/R = 0,093,

h/R = 0.2, a/R = 0.895,

Enlargement of the region where the £ = +! modes cross in Fig. 10,
The positions of the branches as a/R assumes the values 0,895, 0.985
and 1.0 are shown.

Cartesian model geometry for the confined two-dimensional plasma layer.
a) Complex Z-plane showing the mapping (Al). The shaded area (rectangle
OBCD) of Fig. (13) is mapped into the upper half of the g-plane. The
problem can be regarded as a superposition of two potential pgroblems
illustrated in (b) and (c).

Density profile 0,(x) given by the analytic expression (A8) for

d/L = 0,625 or m = O.]1 (thick line). The other curves are numerical
solutions of the Cartesian analogs of Egs. (l) -(6) for the same
geometry, the same 0,(0) and for Ap/d = U.05 and U.1l; the Debye

length Ap is defined as Ap = [2dT/4ﬂq200(0)11/2 .

Geometry in the vicinity of the plasma edge x = a.
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Geometry in the vicinity of the plasma edge x = a.
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